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1. Introduction 

High-performance polyurea elastomers have recently gained considerable interest throughout the 
U.S. Department of Defense (DOD), particularly for their potential in ballistic impact protection 
and blast mitigation capabilities (1–6). There have been extensive studies on high-strain-rate 
mechanical deformation and modeling (3, 6–11), wherein most are focused on a commercial 
polyurea. The commercial polyureas that are of interest to DOD are typically a two-component 
system, yet the majority of research and development on polyurethane, poly(urethane urea), and 
polyurea elastomers has been based on a three-component system (12–18) for use in a broad 
range of applications (19). These elastomers are known to have versatile chemistry yet complex 
microstructure.  

Recent studies of select model 4,4’-dicyclohexylmethane diisocyanate (HMDI)−poly 
(tetramethylene oxide) (PTMO)–diethyltoluenediamine (DETA)-based poly(urethane urea) 
(PUU) elastomers have demonstrated the composition dependence of tunable microstructure 
(20–25) as well as the microstructure evolution (24, 25). These PUUs consist of an aliphatic 
4,4’-dicyclohexylmethane diisocyanate, which is much more flexible in terms of chain 
conformation than an aromatic 4,4’-diphenylmethane diisocyanate (MDI) used in the 
commercial polyureas. Altering the molecular weight (MW) of the PTMO soft segment (SS) 
while keeping the molar ratio of HMDI:PTMO:DETA constant (2:1:1) causes a drastic change in 
microstructure. At SS MW 2000 g/mol, spherulite-like hard domains were observed within a 
SS-rich matrix via atomic force microscopy (AFM) phase images (23–25), whereas greater phase 
mixing between the hard and soft segment was evidenced as the SS MW decreased. For a SS 
MW of 1000 g/mol there was a coexistence of lamellar hard segment domains dispersed in a 
matrix consisting of a fibrillar-like microstructure (23–25), whereas an almost featureless 
microstructure was noted in PUU with SS MW 650 g/mol (25). These AFM observations were 
shown to be consistent with small-angle x-ray scattering results and dynamic mechanical 
analysis (DMA) loss tangent data. Correspondingly, an increase in SS glass transition 
temperature (Tg) and a broadening of the SS relaxation were noted in PUUs with decreasing SS 
MW based on the DMA data (20–22, 25). Additionally, greater strain-rate sensitivity upon 
dynamic mechanical deformation was also evidenced with respect to better phase mixing (20–
22).  

Bogoslovov et al. (3) have proposed that deformation-induced glass transition is a plausible 
molecular mechanism responsible for the performance enhancement in polyurea in addition to 
other potential mechanisms such as shock impedance mismatch, shock-wave dispersion, and 
strain delocalization. Under high-rate loading conditions, the physical response of this class of 
material can be tailored to transition from a rubbery-like to a leathery-like or a glassy state with 
increasing strain rate, where stress levels may be greatly enhanced and large energy-dissipation 
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mechanisms can be realized (3). Additionally, the polyurea coating when subjected to impact 
was also reported to experience a locally elevated pressure, in addition to the compressive strain 
(26). There have been studies addressing the pressure-sensitivity including pressure-shear plate 
impact measurements of a polyurea elastomer at very high strain rates, 105 – 106s-1 (27–29). 
Results showed that shearing resistance of polyurea was significantly dependent upon pressure. 
Our research objective is to better understand the molecular influence on viscoelastic response of 
PUUs, particularly under high strain rate and high-pressure loading conditions. In this work, we 
exploit plate impact measurements and report the preliminary experimental findings on high 
pressure response obtained for a select model PUU. 

2. Experimental 

2.1 Materials 

A select model PUU composed of 4,4’-dicyclohexylmethane diisocyanate (HMDI − Desmodur 
W, Bayer MaterialScience), diethyltoluenediamine (DETA − Ethacure∗ 100-LC, Albemarle 
Corporation, Baton Rouge, Louisiana), and poly(tetramethylene oxide) (PTMO − PolyTHF, 
BASF Corporation) was chosen for this study. This PUU was prepared using a two-step pre-
polymer synthesis method; details of the synthesis can be found in Sarva et al. (20). Typically, 
PTMO, the soft segment, was first reacted with HMDI to form a pre-polymer with a urethane 
linkage, and the reaction was carried out to ensure PTMO was completely end-capped with 
diisocyanate groups. The pre-polymer was then reacted with the chain extender, DETA, to 
complete polymerization. The reaction of HMDI with the DETA diamine resulted in hard 
segments with urea linkages, which could self-assemble to form domains and thus leading to 
microphase separation. The as-cast sheets were fabricated using an in situ polymerization/cast 
approach (20). 

The PUU composition of interest has a molar ratio 5:3:2 of diisocyanate:diamine chain 
extender:PTMO, where the MW of PTMO is 1000 g/mol. The hard segment content (HSu) used 
in this work only accounts for the portion of diisocyanate that reacts with diamine and is 
calculated to be about 34% according to the following equation (18).  

 ( ) ( )
( ) ( ) ( )( )

100 – 1
%

– 1
di da

u
g di da

R M M
HS

M R M R M
+

=
+ +

. (1) 

 

                                                 
∗Ethacure is a registered trademark of Albemarle Corporation, Baton Rouge, LA. 



 

3 

2.2 Plate Impact 

Plate-impact experiments were conducted to gain insight into the high-pressure response of 
PUU. Two experiments were conducted in the configuration shown in figure 1. The PUU 
specimens were disk-shaped, nominally 3.4 mm in thickness and 40 mm in diameter. They were 
accelerated in a light gas gun and impacted against stationary soda lime glass target plates 
(nominally 2.0 mm thick, 40-mm diameter) at impact speeds of 298 and 998 m/s. The impact 
velocities are such that the soda lime glass remains elastic throughout the experiments. The 
particle velocities at the center of the free surface of the target plates were monitored with a 
Velocity Interferometer System for Any Reflector (VISAR) (30). These measurements are 
accurate to within +/–1% and have a 0.5-ns time resolution. Impact speeds are measured just 
prior to impact with a series of electrically conducting pins, to an accuracy of +/–1%. 

 

Figure 1. A schematic of shot configuration used 
in plate impact measurements of PUU 
against stationary soda lime glass (SLG) 
target. 

The basic concept of the plate impact experiment is to use the measured behavior of the soda 
lime glass along with its known properties to infer the behavior of the PUU flyer. The impact 
produces shock waves that transmit into both the flyer and the target. The dimensions are such 
that one dimensional strain conditions are maintained for all relevant data.
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3. Results and Discussion 

For plate-impact measurements, a Lagrangian x-t diagram reflecting the target position-time 
profile can be generated. This diagram is shown in figure 2 for the 298 m/s experiment. The 
release wave from the free-surface of the PUU arrives at the measurement point approximately 
3 µs after impact; this ends the test. However, the soda lime glass is thin enough such that 
several reverberations occur during this time. Each reverberation causes the stress to release, i.e., 
the PUU is partially unloaded in four successive steps after the initial compression.  

 

Figure 2. A Lagrangian x-t diagram for the shock experiment at 298 m/s. 

The measured velocity for the 298 m/s experiment is shown in figure 3. The steps in the velocity 
profile are easily discerned. To reiterate, as each reflection reaches the interface between the 
sample and the target, the stress is released, resulting in a step-increase in the free-surface 
particle velocity. As previously noted, the soda lime glass remains elastic, with properties of 
density ρ = 2.49 kg/m3 and longitudinal wave velocity cL = 5.79 m/s. The free-surface velocities, 
ufree, are estimated from the figure and listed for each state in table 1; i = 1 denotes the initial 
shock, and i = 2, 3 and 4 the three release states.  
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Figure 3. Free-surface velocity of soda lime glass for the plat-impact 
experiment at 298 m/s. 

The stresses, σi, are calculated from the particle velocity using the known elastic impedance of 
the glass. These stresses act on both target and flyer. Since the impact speed is known, particle 
velocity within the PUU, in the reference frame of the moving projectile, can be calculated. 
These are listed in table 1, ui and ρi are used along with the stresses to calculate the shock speeds 
Us,i using the Hugoniot momentum equation:  

 1
1

1

1 i i
i i

i i i
U u u u

+
+

+

σ − σ = +  − ρ . (2) 

The mass equation is used to determine density, ρi, for each state. 

 1
1

1 1

i i
i i

i i

U u
U u

+
+

+ +

− =  − 
ρ ρ . (3) 

The compressive engineering strain can be found from the initial density, ρ0, by  

 01i
i

= −
ρε ρ , (4) 

since one-dimensional strain conditions are maintained. UP refers to the particle velocity due to 
the shock in the PUU. The velocity from the initial step is a point on the Hugoniot and is 
determined from the measured velocity using the following:  

 1
,1 0 2P

uU V= − . (5) 

Particle velocity associated from the release steps can be determined similarly (i = 2, 3, . . .). 
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 1
, 0 2

i i
P i

u uU V ++
= − . (6) 

Here, V0 is the impact speed. These quantities are also reported in table 1. 

Table 1. Data including density, stress, strain, particle velocity, and shock speed obtained for 
the 298 m/s experiment. 

Step No. Density 
(kg/m3) Strain Stress 

(GPa) 
US 

(m/s) 
UP 

(m/s) 
0 1061 0 0.000 NA 0 
1 1179 0.099812 0.672 2519 251 
2 1148 0.076111 0.417 3119 176 
3 1124 0.056339 0.288 2461 127 
4 1110 0.043767 0.194 2638 94 

For the 998 m/s experiment, the PUU is partially unloaded in three successive steps after the 
initial compression. The values of ufree estimated from the initial shock and two release states are 
listed in table 2. The response of the PUU, in terms of stress versus strain, is shown in figure 4, 
wherein at each impact velocity the highest stress point is on the Hugoniot. The stress-strain data 
along the release path appear to coincide with those on the Hugonoit obtained for both the 298 
and 998 m/s experiments. 

Table 2. Data including density, stress, strain, particle velocity, and shock speed obtained for 
the 998 m/s experiment. 

Step No. Density 
(kg/m3) Strain Stress 

(GPa) 
US 

(m/s) 
UP 

(m/s) 
0 1061 0 0.000 NA 0 
1 1353 0.216025 3.042 3643 787 
2 1249 0.150392 1.463 4520 475 
3 1192 0.109566 0.815 3763 317 
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Figure 4. Stress-strain behavior of PUU obtained from plate impact measurements (arrows pointing to 
data on the Hugoniot). 

Although most of the data in figure 4 is for release behavior, an attempt was made to generate a 
correlation of shock velocity (Us) vs. particle velocity (Up) for the data that represent the highest 
stress point on the Hugoniot from each experiment. This is shown in figure 5, along with the Us-
Up obtained for polyurea by Casem et al. (31) for comparison. These preliminary results indicate 
that the plate impact behavior of the select model PUU appears to be very similar to those of the 
commercial polyurea at velocity in the range of 298–1000 m/s, despite their difference in terms 
of molecular structure.  



 

8 

 

Figure 5. Plot of Us-Up for PUU, based on the Hugoniot states measured in two experiments, and data for 
polyurea (dashed line) (31) are also included for comparison.  

Further plate-impact measurements are in progress, particularly with an attempt for 
determination of an equation of state (EOS) for this PUU. The latter is of interest for the 
multiscale modeling for validation of EOS.  

 

4. Conclusion 

Plate-impact measurements of a select model PUU elastomer have been made. Longitudinal 
stresses of 0.672 and 3.042 GPa are achieved at impact velocities of 298 and 998 m/s, 
respectively. For the 298 m/s experiment, the PUU is partially unloaded in four successive steps 
after the initial compression, while three successive steps of unloading occur in the 998 m/s 
experiment. Additionally, the data obtained for the Hugoniot state appear to coincide with those 
obtained along the release path from both experiments. Measurements of Us vs. Up also show 
that the Hugoniot of this material is similar to that of polyurea.   
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